Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
(1) Background: Staphylococcus aureus (S. aureus) is one of the most frequent causes of biofilm- associated infections. With the emergence of antibiotic-resistant, especially methicillin-resistant S. aureus (MRSA), there is an urgent need to discover novel inhibitory compounds against this clinically important pathogen. In this study, we evaluated the antimicrobial and anti-biofilm activity of 11 compounds, including phenyl propenes and phenolic aldehydes, eugenol, ferulic acid, sinapic acid, salicylaldehyde, vanillin, cinnamoyl acid, and aldehydes, against drug-resistant S. aureus isolates. (2) Methods: Thirty-two clinical S. aureus isolates were obtained from Alkhidmat Diagnostic Center and Blood Bank, Karachi, Pakistan, and screened for biofilm-forming potential, and susceptibility/resistance against ciprofloxacin, chloramphenicol, ampicillin, amikacin, cephalothin, clindamycin, streptomycin, and gentamicin using the Kirby-Bauer disk diffusion method. Subsequently, 5 representative clinical isolates were selected and used to test the antimicrobial and antibiofilm potential of 11 compounds using both qualitative and quantitative assays, followed by qPCR analysis to examine the differences in the expression levels of biofilm-forming genes (ica-A, fnb-B, clf-A and cna) in treated (with natural compounds and their derivatives) and untreated isolates. (3) Results: All isolates were found to be multi-drug resistant and dominant biofilm formers. The individual Minimum Inhibitory Concentration (MIC) of natural compounds and their analogues ranged from 0.75–160 mg/mL. Furthermore, the compounds, Salicylaldehyde (SALI), Vanillin (VAN), α-methyl-trans-cinnamaldehyde (A-MT), and trans-4-nitrocinnamic acid (T4N) exhibited significant (15–92%) biofilm inhibition/reduction percentage capacity at the concentration of 1–10 mg/mL. Gene expression analysis showed that salicylaldehyde, α-methyl-trans-cinnamaldehyde, and α-bromo-trans-cinnamaldehyde resulted in a significant (p < 0.05) downregulation of the expression of ica-A, clf-A, and fnb-A genes compared to the untreated resistant isolate. (4) Conclusions: The natural compounds and their analogues used in this study exhibited significant antimicrobial and anti-biofilm activity against S. aureus. Biofilms persist as the main concern in clinical settings. These compounds may serve as potential candidate drug molecules against biofilm forming S. aureus....
Xanthomonas axonopodis pv. citri (Xac) belongs to the Gram-negative species, causing citrus canker that seriously affects the fruit yield and quality of many rutaceae plants. Herein, we found that compound 2-(butyldisulfanyl) quinazolin-4(3H)-one exhibited remarkable anti-Xac activity in vitro with a half effective concentration (EC50) of 2.6 μg/mL, while the positive controls thiodiazole-copper with 57 μg/mL and bismerthiazol with 68 μg/mL and this compound showed great anti-citrus canker activity in vivo. This active compound also was confirmed to reduce biofilm formation, increase the level of reactive oxygen species, damage the morphological structure of the bacteria, and cause bacterial death. Proteomics and RT-qPCR analysis results indicated that this compound down-regulated the expression of enzymes in the MEP (2-methyl-D-erythritol 4-phosphate) pathway and might achieve destructive ability of Xac. Overall, this study indicates that such derivatives could be a promising scaffold to develop novel bactericides to control citrus canker....
Despite its commonly overlooked role as a commensal, Ralstonia mannitolilytica becomes an emerging global opportunistic human pathogen and a causative agent of various infections and diseases. In respiratory illnesses, including cystic fibrosis and chronic obstructive pulmonary disease (COPD), R. mannitolilytica is also identified presumably as colonizer. In this study, one distinctive clone of R. mannitolilytica was firstly identified as colonizer for the first 20 days during hospitalization of a patient. It was then identified as a causative agent for catheter-related bloodstream infection with negative identification after effective treatment, verifying its transition from commensal to pathogen. In conclusion, we provide convincing evidence that during hospitalization of a patient, R. mannitolilytica transitioned from commensal to pathogen in the respiratory tract leading to catheter-related bloodstream infection (CRBSI)....
Essential oils from aromatic and medicinal plants have many bioactive compounds known for their important biological activities mainly their antibacterial effects. Here we evaluated qualitatively and quantitatively the biofilm formation capability of pathogenic bacterial strains (n = 8). Then, we investigated the antibacterial, antibiofilm, antiquorum-sensing, and antiswarming efficacy of Origanum vulgare essential oil (EO) and terpinene-4-ol. Our results revealed that EO exhibited a more potent inhibitory effect against the tested strains. While the terpinene-4-ol was found to be more effective against developed Staphylococcus aureus biofilm. Regarding the anti quorum-sensing activity, we noticed that O. vulgare displayed better inhibition percentages in violacein production even at a low concentration (MIC/4). Additionally, this EO showed better inhibition of Pseudomonas aeruginosa PAO1 migration in comparison with the terpinene-4-ol. Our findings revealed that using pure O. vulgare EO demonstrated better competitive effects against pathogenic bacteria with a different mode of action when compared to the terpinene-4-ol. Hence, exploration and development of efficient anti-infection agents from natural resources such as full EOs represent promising tools in anti-infective therapy....
Infectious diseases are known as the second biggest cause of death worldwide, due to the development of antibiotic resistance. To overcome this problem, nanotechnology offers some promising approaches, such as drug delivery systems that can enhance drug efficiency. Herein, a Graphene Oxide-polyethylene glycol (GO-PEG) nano-platform was synthesized and penicillin and oxacillin, two antibiotics that are ineffective against Methicillin-resistant S. aureus (MRSA), were loaded on it to improve their effectiveness. The nanocomposites were characterized using FTIR, XRD, UV– Vis, FE-SEM/EDX, and Zeta potential analyses, followed by an evaluation of their antibacterial activity toward MRSA. Based on the results, drug loaded GO-PEG nanocomposites with loading efficiencies of 81% and 92% for penicillin and oxacillin, respectively, were successfully synthesized. They showed a controlled release within six days. The zeta potential of GO-PEG-oxacillin and penicillin was −13 mV and −11 mV, respectively. The composites showed much more activity against MRSA (80–85% inhibition) in comparison to GO-PEG (almost 0% inhibition) and pure antibiotics (40–45% inhibition). SEM images of MRSA treated with GO-PEG-antibiotics showed a deformation in the structure of bacterial cells, which led to the collapse of their intracellular components. These results demonstrate the effectiveness of utilizing the GO-based nanoplatforms in enhancing the antibacterial activity of the antibiotics....
Loading....